Journal Publications 2016

Logo NINE site ok

PUBLICATIONS

JOURNAL2 CONFERENCE

All |

 2024 2023|

2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016

 


NT

The BEPU Evaluation Model with RELAP5-3D for the Licensing of the Atucha-II NPP

A. Petruzzia , M. Cherubinia , M. Lanfrediniab , F. D’Auriab, and O. Mazzantinic

aNuclear and INdustrial Engineering (NINE), Via della Chiesa XXXIII, 759, Lucca, Italy

bUniversity of Pisa, GRNSPG, Via Livornese 1219, San Piero a Grado, Pisa, Italy

cNA-SA, Nucleoelectrica Argentina S.A., UG-CNAII, 2806 Lima, Argentina


Nuclear Technology, Volume 193, January 2016

 

 

Download  (free for the first 50 downloads)


Abstract —
 Within the licensing process of the Atucha-II pressurized heavy water reactor, the best-estimate plus uncertainty (BEPU) approach has been selected for issuing Chapter 15 of the Final Safety Analysis Report. The RELAP5-3D code developed by Idaho National Laboratory has been adopted as the best estimate system thermal-hydraulic code to perform the accident analyses. The complexity of a nuclear power plant (NPP) and of the accident scenarios may be a challenge for a conservative analysis and may justify the choice of a BEPU approach in the licensing process. This implies two main needs: (1) the need to adopt and to prove (to the regulatory authority) an adequate quality for the computational tools and (2) the need to account for the uncertainty. The purpose of the present paper is to outline key aspects of the BEPU process aimed at the licensing of the Atucha-II (CNA-II) NPP in Argentina operated by Nucleoeléctrica Argentina (NA-SA). Among the general attributes of a methodology to perform accident analysis of a NPP for licensing purposes, the very first one should be compliance with the established regulatory requirements. A second attribute deals with the adequacy and the completeness of the selected spectrum of events that should consider the combined contributions of deterministic and probabilistic methods. The third attribute is connected to the availability of qualified tools and analytical procedures suitable for the analysis of accident conditions envisaged for the NPP of concern. The execution of the overall analysis and the evaluation of results in relation to slightly fewer than 100 scenarios revealed the wide safety margins available for the NPP of concern, which was licensed on May 29, 2014.



NT

RELAP5 Applications at GRNSPG-NINE: 30 Years of Activities

 A. Petruzzia, M. Cherubinia, F. D’Auriab

aNuclear and INdustrial Engineering (NINE), Via della Chiesa XXXIII, 759, Lucca, Italy

bGRNSPG—University of Pisa, Via Livornese 1219, San Piero a Grado (PI), Pisa, Italy


Nuclear Technology, Volume 193, January 2016

 

Download   (free for the first 50 downloads)
 

Abstract — The application of RELAP5 at GRNSPG-NINE (Nuclear Research Group of San Piero a Grado–Nuclear and Industrial Engineering) started more than 30 years ago during which several versions of the code have been applied for the analysis of a very large variety of scenarios occurring in facilities and nuclear installations.
The present paper has two goals: (1) to summarize the results and main outcomes achieved through the application of RELAP5 to international projects and benchmarks in which GRNSPG-NINE was involved and (2) to qualify the system’s thermal-hydraulic code calculations through the systematic application of a set of developed procedures.
Among the analyses performed, this paper will provide insights into the code results and, whenever possible, into the comparison with the reference/experimental data of scenarios measured in (1) integral test facilities: PSB-VVER, ATLAS, PKL, LOBI, LOFT, SPES, PACTEL; (2) separate effect test facilities: BFBT, Neptun, PANDA; (3) research reactors: Experimental Breeder Reactor (EBR); and (4) nuclear power plants: Atucha-II [pressurized heavy water reactor (PHWR)-Konvoi], VVER-1000, Darlington (CANDU).
In relation to the methodology developed for qualifying a system thermal-hydraulic code calculation, this paper provides a short description and spot results of the systematic application to the cases mentioned above in respect to some of the following steps: (1) demonstration of the geometrical fidelity; (2) demonstration of the steady-state achievement; (3) qualification at the on-transient level, which implies the characterization of (a) phenomenological windows and (b) relevant thermal-hydraulic aspects; and (4) quantitative analysis to evaluate the accuracy of the code calculation using the fast Fourier transform based method.


 

epjn cover

Assessment of stainless steel 348 fuel rod performance against literature available data using TRANSURANUS code

C. Giovedia, M. Cherubinib, A. Abec, F. D’Auriad

aLabRisco, University of São Paulo, Av. Prof. Mello Moraes 2231, São Paulo, SP, Brazil

bNuclear and INdustrial Engineering (NINE), Via della Chiesa XXXIII, 759, Lucca, Italy

cNuclear and Energy Research Institute - IPEN/CNEN, Nuclear Engineering Center – CEN, Av. Prof. Lineu Prestes 2242, São Paulo, SP, Brazil

dGRNSPG—University of Pisa, Via Livornese 1219, San Piero a Grado (PI), Pisa, Italy

EPJ Nuclear Sci. Technol. , Volume 2, May 2016

 

Abstract — This Early pressurized water reactors were originally designed to operate using stainless steel as cladding material, but during their lifetime this material was replaced by zirconium-based alloys. However, after the Fukushima Daiichi accident, the problems related to the zirconium-based alloys due to the hydrogen production and explosion under severe accident brought the importance to assess different materials. In this sense, initiatives as ATF (Accident Tolerant Fuel) program are considering different material as fuel cladding and, one candidate is iron-based alloy. In order to assess the fuel performance of fuel rods manufactured using iron-based alloy as cladding material, it was necessary to select a specific stainless steel (type 348) and modify properly conventional fuel performance codes developed in the last decades. Then, 348 stainless steel mechanical and physics properties were introduced in the TRANSURANUS code. The aim of this paper is to present the obtained results concerning the verification of the modified TRANSURANUS code version against data collected from the open literature, related to reactors which operated using stainless steel as cladding.
Considering that some data were not available, some assumptions had to be made. Important differences related to the conventional fuel rods were taken into account. Obtained results regarding the cladding behavior are in agreement with available information. This constitutes an evidence of the modified TRANSURANUS code capabilities to perform fuel rod investigation of fuel rods manufactured using 348 stainless steel as cladding.


 

nuclsceng

Standardized Consolidated Calculated and Reference Experimental Database (SCCRED): A Supporting Tool for V&V and Uncertainty Evaluation of Best-Estimate System Codes for Licensing Applications

 A. Petruzzia, F. D’Auriab


a
Nuclear and INdustrial Engineering (NINE), Via della Chiesa XXXIII, 759, Lucca, Italy

bGRNSPG—University of Pisa, Via Livornese 1219, San Piero a Grado (PI), Pisa, Italy


Nuclear Science and Engineering, Volume 182, January 2016

 

Download   (free for the first 50 downloads)

 

Abstract — This paper discusses the role and the depth of the analysis required for merging, on one hand, suitable experimental data and, on the other hand, qualified code calculation results. The availability of an experimental and calculated qualified database is of outmost importance for the validation and qualification of codes. Such a database can be used not only for demonstrating that the code results are reliable and for performing an independent code assessment but also as a basis for developing and validating an uncertainty methodology. As discussed in several other papers and guidelines, an uncertainty methodology must rely on the availability of a qualified code and qualified procedures. The development of a Standardized Consolidated Calculated and Reference Experimental Database (SCCRED) that includes documentation such as the reference data set of the facility and of the tests, the qualification report of the code calculations, and the engineering handbook constitutes an approach envisaged also by the International Atomic Energy Agency to set up a qualified experimental and calculated database for verification and validation (V&V) purposes of computational tools and uncertainty methodologies.

In order to frame and to outline the role of a qualified database for performing a best-estimate and uncertainty analysis (UA), a summary of the approaches for performing the uncertainty evaluation is provided distinguishing among the methods based on propagation of input uncertainties, the methods based on code output accuracy propagation, and the predictive modeling methodology. The main issues from the review of the uncertainty methods are the following: (a), the identification of the uncertainty-method-user effect to be considered in addition to the more well-known code-user effect when the BEPU (Best Estimate Plus Uncertainty) approach is selected to perform accident analysis and (b) (partially connected also with the first issue) the need for validation of the uncertainty methods (in the same way as validation of a computer code is a fundamental prerequisite for application of the code).

To address the two issues above, the Code with the capability of Internal Assessment of Uncertainty (CIAU) is discussed in detail. In particular, it shall be noted that the CIAU method (which belongs to the methods based on code output accuracy propagation) needs a qualified set of experimental and code calculation results as input for performing a qualified intrinsically validated UA, which has a more limited uncertainty-method-user effect in comparison to the methods based on propagation of input uncertainties.

Following the above consideration, the creation of SCCRED as a standardized consolidated reference experimental and calculated database constitutes a prerequisite for the development and application of the CIAU method, but at the same time such a qualified database can also be used for the V&V process of methods based on propagation of input uncertainties contributing to limit the uncertainty-method-user effect.